Rotary Actuator M7061

APPLICATION

The M7061 actuator is designed to provide floating control in heating and air conditioning systems. High control performance and a robust design are standard for this actuator.

In combination with the valves DRG/DR/DRU/DRR/ZR, it is possible to control very exact heating and cooling water temperatures.

The mechanical interface between actuator and valve is designed for reliable operation.

Actuators with torques from 10 Nm up to 40 Nm are available for a wide range of rotary mixing valves (DN 15 up to DN 80).

SPECIAL FEATURES

- Protected against overload and blocking
- Maintenance-free electrical actuator for rotary valves
- Clear position indicator
- Direct mounting on rotary valves
- Manual operation
- High torque
- Large wiring cabinet
- Long lifetime

TECHNICAL DATA

Specifications	
Power supply:	24 Vdc (±10%)24 Vac
	(+15% / -20%, 50/60 Hz)
Power consumption:	100 mA
Control signal:	010 V / 210 V
Protection standard:	IP 54 per EN 60529
Angle of rotation:	90°
Insulation class:	I per EN 60730
Ambient operating	0 to 45 °C
temperature:	
Water temperature in valve:	2 to 110 °C
Max. relative air humidity:	non-condensing
Weight:	1.5 kg

METHOD OF OPERATION

The actuator is powered by a DC-motor. The spindle of the actuator rotates 90° . The position is controlled by internal electronics.

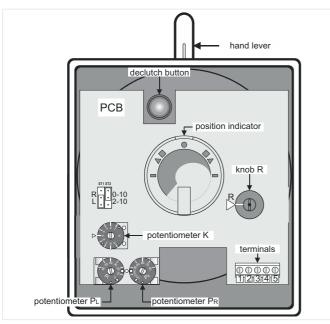


Fig. 1 Main features

The angle of rotation is electronically limited and can be adjusted (see section "Angle of Rotation"). The spindle can also be rotated manually by using the declutch button to disengage the gear and then turning the hand lever

As soon the actuator is powered, the valve is driven by the actuator again.

An electrical overload circuit protects the actuator. If the rated torque is exceeded, the actuator is switched OFF automatically.

The actuator is maintenance-free.

VMU1

After removing the cover of the M7061, the VMU1 is pushed onto the printed circuit board of the M7061 in the desired position until it locks itself.

The switch located at the upper edge of the housing of the VMU1 adjusts the direction of rotation of the M7061. It must be adjusted to correspond with the position of jumper ST1.

The angle of rotation of the M7061 is then set using potentiometer Y on the VMU1 housing. Potentiometer Y must be adjusted to the same symbol (square or triangle) as potentiometer P_L or P_R .

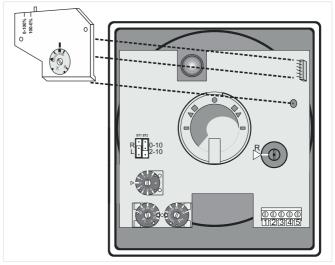


Fig. 2 Mounting VMU1

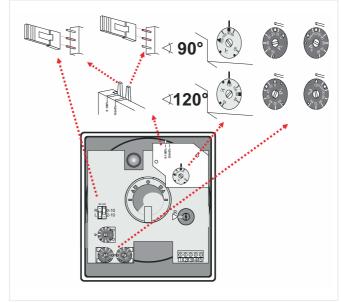


Fig. 3 Adjusting settings

Angle of Rotation

The angle of rotation is adjustable via the potentiometers PLand PR. Start and end points can be adjusted independently.

The nominal angle is 90 ° (105° - 15° = 90°); the potentiometers are factory set as follows: P_L = 15 and P_R = 105. These settings are marked by a square \blacksquare .

The desired angle can be adjusted by changing the start and end points; within the total range, all angles are possible. The start point can be adjusted between 0 and 60° using potentiometer PL, while the end point is adjustable between 60° and 120° using potentiometer P_R.

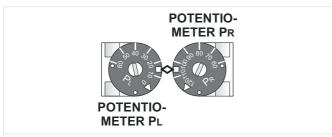


Fig. 4 Example setting of angle of rotation (PL and PR)

The figure shows an example setting of the angle rotation in which the start point has been set to 15° and the end point to 105° .

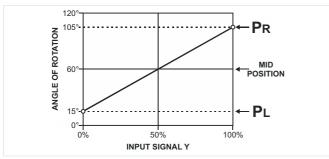


Fig. 5 Input signal Y and angle of rotation

This figure shows the corresponding relation between the input signal and the angle of rotation.

Setting angles of rotation which cause the actuator to drive against the mechanical end-stop will decrease the actuator's effective lifetime.

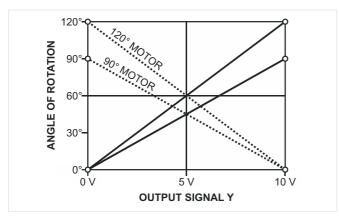


Fig. 6 Output signal Y and angle of rotation with VMU1

COMMISSIONING

Direction of Motor Rotation

The direction of rotation can be defined using jumper ST1.

- ST1 in "L" (left) position (factory setting): clockwise rotation 0% → 100% (i.e. when Y = 0 Vdc, the hand lever is at the left end)
- ST1 in "R" (right) position: counter clockwise rotation 100% → 0% (i.e. when Y = 0)
 Vdc, the hand lever is at the right end).

Input Signal Y

The input signal Y can be set using jumper ST2.

- ST2 in the upper position (factory setting): Y = 0...10 Vdc
- ST2 in lower position: Y = 2...10 Vdc

Adjusting Spindle to Feedback Potentiometer

The position of the spindle can be adjusted to match the signal from the feedback potentiometer using knob R. With the motor in the center position (the mark on the hand lever must line up with the mark on the motor housing), the graduation on knob R must point to the triangle on the PCB (factory setting). Adjustment is required only if the printed circuit board is changed for servicing.

Actuator Characteristic

The actuator characteristic, i.e. the relation between motor rotation and the input signal Y, can be altered to suit the given valve using potentiometer K. The curve of the characteristic between its start and end points can be adjusted infinitely between convex, linear and concave. Potentiometer K is marked with the numerals 1 through 9. The linear characteristic K = 5 is the factory setting.

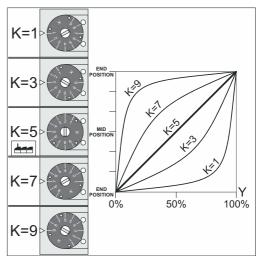


Fig. 7 Characteristic curve

Examples

When mounting the proportional actuator onto a valve with a linear characteristic, an equal percentage characteristic onthe controlled unit can be achieved by setting a concave curve ($K \approx 3$).

An actuator used together with an oversized mixing valve is a further application requiring a concave curve (K \approx 3). If Y = 50% and K = 5, then the actuator will not stop at the mid position.

If, however, Y = 50% and K = 5, then the actuator will stop at the mid position.

INSTALLATION GUIDELINES

Before mounting the actuator, position the rotary valve according to its installation instruction.

Electrical connection

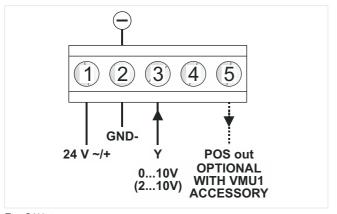


Fig. 8 Wiring

To override the input signal Y, i.e. in order to control the position from an external source, connect to motor terminals as follows

- for a signal variable of 100%, connect terminal 3 to terminal 4
- for a signal variable of 0%, connect terminal 3 to terminal 2 (system ground or ground wire).

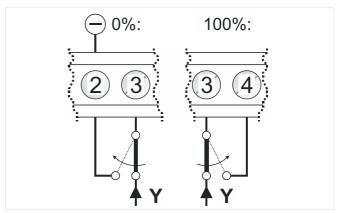
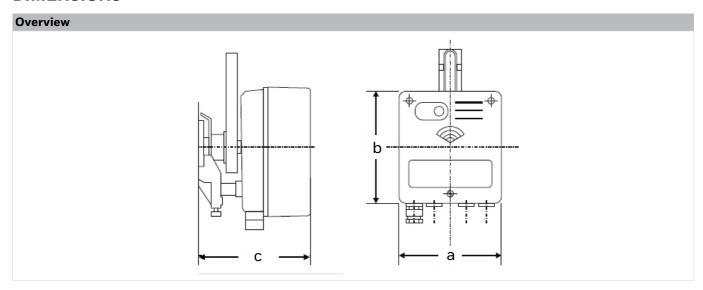
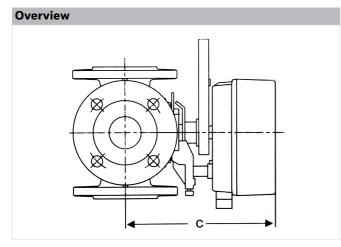



Fig. 9 Overriding the input signal Y

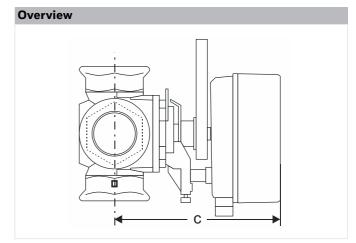
DIMENSIONS

DN	а	b	С	Туре
15 to 40	133	146	131	M7061E1012
15 to 80				M7061E1020

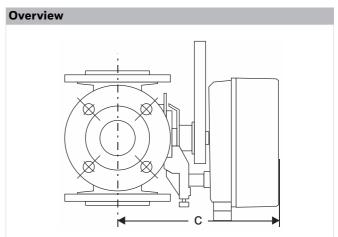

Note: All dimensions in mm unless stated otherwise.

Dimensions in combination with with DRxxxGMLA

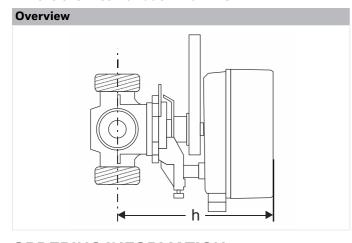
Overview


DN	С	Туре
15	179	DR15GMLA
20	179	DR20GMLA
25	179	DR25GMLA
32	188	DR32GMLA
40	188	DR40GMLA

Dimensions in combination with DRxxxGFLA


DN	С	Туре
20	179	DR20GFLA
25	179	DR25GFLA
32	188	DR32GFLA
40	188	DR40GFLA
50	202	DR50GFLA
65	219	DR65GFLA
80	219	DR80GFLA
100	240	DR100GFLA
125	267	DR125GFLA
150	274	DR200GFLA

Dimensions in combination with ZRxxxMA


DN	С	Туре
15	179	ZR15MA
20	179	ZR20MA
25	179	ZR25MA
32	188	ZR32MA
40	188	ZR40MA

Dimensions in combination with ZRxxxFA

DN	С	Туре
25	179	ZR25FA
32	188	ZR32FA
40	188	ZR40FA
50	202	ZR50FA
65	219	ZR65FA
80	219	ZR80FA
100	240	ZR100FA
125	267	ZR125FA
150	274	ZR150FA
200	314	ZR200FA

Dimensions in combination with DRU

DN	h	Туре
25	182	DRU25-2.5
25	182	DRU25-4.0
25	182	DRU25-6.3
25	182	DRU25-10
25	182	DRU25-16
32	200	DRU32-10
32	200	DRU32-16
32	200	DRU32-25

ORDERING INFORMATION

The following tables contain all the information you need to make an order of an item of your choice. When ordering, please always state the type, the ordering or the part number.

Options

Nominal torque (Nm)	Runtime	Order number
10	1.5	M7061E1012
20	3.0	M7061E1020

Accessories

	Description	Part No.
VMU1	The VMU1 is an optional accessory which provides a feedback value (output signal) indicating the actuator's current position.	VMU1

Manufactured for and on behalf of